LA ORGANIZACIÓN PARA LA SALUD FUNDADA POR EL DR. RATH ES ÚNICA EN EL MUNDO:
TODOS LOS BENEFICIOS SE DESTINAN A UNA FUNDACIÓN DE UTILIDAD PÚBLICA. leer más

Dr. Rath Health Foundation

Dr. Rath Health Foundation

 

Página principal > Biblioteca > Publicationes Cientificas

JOURNAL OF APPLIED NUTRITION (REVISTA DE NUTRICIÓN APLICADA),
VOLUMEN 48, NÚMERO 3 INFORME ORIGINAL

El Programa de Suplementos Alimenticios detiene la progresión de la arteriosclerosis coronaria temprana

- Documentado por tomografía computerizada ultrarápida -

Matthias Rath, M.D. y Aleksandra Niedzwiecki, Ph.D.

Resumen : El objetivo de este estudio fue determinar el efecto de un programa de suplementos alimenticios definido sobre la progresión natural de la arteriopatía coronaria. Este programa de suplementos alimenticios estaba compuesto de vitaminas, aminoácidos, minerales y oligoelementos, incluyendo una combinación de nutrientes esenciales patentada para su uso en la prevención e inversión de la enfermedad cardiovascular. El estudio fue diseñado como intervención prospectiva antes y después de probarse durante un período de 12 meses e incluía a 55 pacientes externos de entre 44 y 67 años en varios estadios de cardiopatía coronaria. Los cambios en la progresión de la calcificación arterial coronaria antes y durante la intervención con suplementos alimenticios se determinaron mediante tomografía computerizada ultrarápida (Ultrafast CT). La tasa de progresión natural de la calcificación arterial coronaria antes de la intervención era por término medio del 44% anual. La progresión de la calcificación arterial coronaria disminuyó en una media del 15% en el curso de un año de suplementación alimenticia. En un subgrupo de pacientes en estadios tempranos de arteriopatía coronaria, se produjo una disminución estadísticamente significativa y no se observó ninguna progresión de la calcificación coronaria. En casos individuales se pudo documentar la inversión y desaparición completa de calcificaciones coronarias previamente existentes. Este es el primer estudio clínico que documenta la efectividad de un programa definido de suplementos alimenticios para la detención de formas tempranas de arteriopatía coronaria en el transcurso de un año. El programa de suplementos alimenticios aquí probado debe considerarse un método efectivo y seguro para la prevención y terapia adjunta de la enfermedad cardiovascular.

Palabras clave: cardiopatía coronaria, tomografía computerizada ultrarápida, suplementos alimenticios

Introducción

De acuerdo con la Organización Mundial de la Salud, más de 12 millones de personas mueren cada año de ataques de corazón, apoplejías y otras formas de enfermedad cardiovascular. Los costes directos e indirectos del tratamiento de la enfermedad cardiovascular constituyen el mayor gasto en materia de salud en todos los países industrializados del mundo. A pesar de que en algunos países se ha tenido un modesto éxito en la reducción de la tasa de mortandad debida a ataques al cardiacos y apoplejías, a escala mundial la epidemia cardiovascular aún se está expandiendo.

Los conceptos actuales sobre la patogénesis de la enfermedad cardiovascular se centran en los factores elevados de riesgo plasmático, que dañan la pared vascular y provocan así la arterogenesis y la enfermedad cardiovascular. 2-4 De acuerdo con esto, los medicamentos reductores del colesterol y modeladores de otros factores de riesgo plasmático se han convertido en un método terapéutico predominante en la prevención de la enfermedad cardiovascular.

Uno de nosotros propuso una nueva base lógica científica acerca del inicio de la arteriosclerosis y la enfermedad cardiovascular 5,6. Puede resumirse de la forma siguiente: la causa de la enfermedad cardiovascular se debe principalmente a la deficiencia crónicas de vitaminas y otros nutrientes esenciales con propiedades bioquímicas definidas, tales como los coenzimas, portadores de energía celular y antioxidantes.7,8 La reducción crónica de estos nutrientes esenciales en las células musculares lisas vasculares y endoteliales perjudica a su función fisiológica. Por ejemplo, la deficiencia crónica de ascorbato, similar al escorbuto temprano, conduce al deterioramiento morfológico de la pared vascular y a microlesiones endoteliales, características histológicas de la arteriosclerosis temprana. 9-11 A continuación se desarrollan placas ateroscleróticas como resultado de un mecanismo de reparación sobrecompensatorio que comprende la deposición de factores plasmáticos sistémicos, así como respuestas celulares locales en la pared vascular.5,6 Este mecanismo reparador está principalmente exacerbado en lugares de tensión hemodinámica, lo que explica el desarrollo predominantemente local de placas arterioscleróticas en las arterias coronarias y el infarto de miocardio como la manifestación clínica más frecuente de enfermedad cardiovascular.

Los estudios realizados en animales han confirmado esta base lógica científica y a consecuencia de esto se ha patentado la combinación de ascorbato con otros nutrientes esenciales en la prevención y tratamiento de la enfermedad cardiovascular.12 Basándonos en esta tecnología patentada, hemos desarrollado un programa de suplementos alimenticios, que se ha probado en este estudio en pacientes con cardiopatía coronaria.

Pacientes y Métodos

Pacientes

Para el estudio se reclutó un total de 55 pacientes, 50 hombres y 5 mujeres, con arteriopatía coronaria documentada y diagnosticada por Ultrafast CT. El criterio de inclusión fue la disponibilidad de un escáner Ultrafast CT de gran calidad procedente de una visita anterior al Centro de Escáner Cardiológico de South San Francisco. Al principio del estudio cada paciente rellenó un cuestionario completo, que se actualizó al cabo de seis y doce meses. Este cuestionario incluía el historial médico, eventos cardíacos anteriores y factores de riesgo cardiovascular, además de datos sobre el estilo de vida de la persona: cuestiones específicas relacionadas con la dieta habitual del paciente, como una dieta estrictamente vegetariana, predominantemente de frutas y verduras o predominantemente de carne, pescado o ave; la ingestión diaria de diferentes vitaminas y otros nutrientes esenciales y la frecuencia del ejercicio físico realizado por el paciente. Las pruebas de laboratorio disponibles documentaban una población heterogénea respecto al colesterol y los triglicéridos plasmáticos. Cerca de la mitad de los pacientes tomaban diferentes tipos de medicamentos de prescripción, incluidos calcioantagonistas, betabloqueantes y medicamentos reductores del colesterol. Antes de empezar el estudio, se indicó a los pacientes que no debían cambiar su dieta o estilo de vida excepto por la adición del programa de suplementos alimenticios que se estaba probando. Los cambios debían reflejarse en los cuestionarios. El cumplimiento del programa de suplementos alimenticios se monitorizaba en los cuestionarios, mediante llamadas telefónicas y durante las visitas de control.

Composición y administración del programa de suplementos alimenticios

Los participantes tomaron las siguientes dosificaciones diarias de suplementos alimenticios durante un año:

Vitaminas:
vitamina C 2700 mg, vitamina E(d-alfatocoferol) 600 UI, vitamina A (en forma de betacaroteno) 7,500 UI, vitamina B-1 (tiamina) 30 mg, vitamina B-2 (riboflavina) 30 mg, vitamina B-3 (en forma de niacina y niacinamida) 195 mg, vitamina B-5 (pantotenato) 180 mg, vitamina B-6 (piridoxina) 45 mg, vitamina B-12 (cianocobalamina) 90 mcg, vitamina D (colecalciferol) 600 UI.

Minerales:
calcio 150 mg, magnesio 180 mg, potasio 90 mg, fosfato 60 mg, cinc 30 mg, manganeso 6 mg, cobre 1500 mcg, selenio 90 mcg, cromo 45 mcg, molibdeno 18 mcg.

Aminoácidos:
L-prolina 450 mg, L-lisina 450 mg, L-carnitina 150 mg, L-arginina 150 mg, L-cisteína 150 mg. Coenzimas y otros nutrientes: ácido fólico 390 mcg, biotina 300 mcg, inositol 150 mg, coenzima Q-10 30 mg, picnogenol 30 mg y citrobioflavonoides 450 mg. 

Monitorización de la arteriopatía coronaria

La cantidad de calcificación coronaria se midió de forma no invasiva con un escáner Imatron C-100 Ultrafast CT en modo de volumen de alta resolución, utilizando un tiempo de exposición de 100 milisegundos. Se utilizó el electrocardiograma para obtener cada imagen en el mismo punto de la diástole, correspondiente al 80% del intervalo RR. En cada escáner se obtuvieron 30 imágenes consecutivas a intervalos de 3 mm comenzando 1 cm por debajo de la carina y avanzando caudalmente para incluir toda la longitud de las arterias coronarias. Los escáneres realizados al principio del estudio y después de 6 y 12 meses de estudio incluyeron una segunda secuencia de escaneo de 30 imágenes a intervalos de 3 mm en todo el corazón. Las 30 imágenes del segundo escaneo se tomaron entre los intervalos de 3 mm del primer escaneo, produciendo como resultado un escaneo del corazón a intervalos de 1,5 mm. La exposición a la radiación total utilizando esta técnica fue de <1 rad por paciente (<0,01 Gy).

El umbral de escaneo se estableció en 130 unidades Hounsfield (Hu) para la identificación de lesiones calcificadas. El área mínima para diferenciar las lesiones calcificadas mediante el instrumento CT fue de 0,68 mm2. La cantidad de lesión, también conocida con el nombre de puntuación de escaneo arterial coronario (Coronary Artery Scanning - CAS) se calculó multiplicando el área lesionada por un factor de densidad derivado de la unidad Hounsfield máxima en este área.13 El factor de densidad se asignó de la siguiente forma: 1 para lesiones con una densidad máxima de 130-199 Hu, 2 para lesiones de 200-299 Hu, 3 para lesiones de 300-399 Hu y 4 para lesiones > 400 Hu. Las áreas de calcio totales y puntuaciones CAS de cada escaneo realizado con Ultrafast CT se determinaron sumando las áreas o puntuaciones de las lesiones individuales de las arterias coronarias izquierda principal, izquierda anterior descendiente, circunfleja y derecha.

Varios estudios han confirmado una correlación excelente de la extensión de la arteriopatía coronaria valorada por el escaneo Ultrafast CT en comparación con los métodos angiográfico e histomorfométrico.13-15 Considerando la precisión y la no invasividad del método, Ultrafast CT fue el sistema elegido para un estudio de intervención que incluyó los estadios tempranos asintomáticos de la arteriopatía coronaria.

Statistical Analysis

The growth rate of coronary calcifications was calculated as the quotient of the differences in the calcification areas or CAS scores between two scans divided by the months between these scans according to the formula (Area2-Area1):(Date2-Date1), or (CAS score2-CAS score1):(Date2-Date1) respectively. The data were analyzed using standard formulas for means, medians, and standard error of the means (SEM). Pearson's correlation coefficient was used to determine the association between continuous variables. One tailed Student t-test was used to analyze differences between mean values, with a significance defined at <0.5. Progression of calcification was predicted by linear extrapolation. The distribution of the growth rate of CAS scores was described by a smooth curve resulting from a third order polynominal fit (y=a + bx 3 , where a = 0.9352959, b = 8.8235 x 10 -5 ).

Results

The aim of this study was to determine the effect of a defined nutritional supplement program on the natural progression of coronary artery calcification particularly in its initial stages as measured by Ultrafast CT. We therefore evaluated the results of the entire study group (n=55) and of a subgroup of 21 patients with early coronary artery calcification, as defined by a CAS score of <100.

Table 1 separately lists the characteristics of the study population assessed by the questionnaire for all patients and for a subgroup with early coronary artery disease.


Table 1: Clinical data of study participants from patient protocol at study onset

This is the first intervention study using Imatron's Ultrafast CT technology. One of the first aims of this study was to determine the rate of natural progression of coronary calcium deposits in situ , without the intervention of the nutritional supplement program. Figure 1 shows the distribution of the monthly progression of calcifications in the coronary arteries of all 55 patients in relation to their CAS score at study entry. 


Figure 1. Distribution of monthly increase in CAS scores in relation to CAS
scores at study entry. The data represent all 55 patients individually. The calcification
rate distribution pattern can be described by the polynominal curve : y=a + bx3,
where a = 0.9352959, b = 8.8235x10-5.

We found that the higher the CAS score was initially, without intervention, the faster the coronary calcification progressed. Accordingly, the average monthly growth rate of coronary calcifications ranged from 1 CAS score per month in patients with early coronary heart disease to more than 15 CAS score per month in patients with advanced stages of coronary calcifications. The growth pattern of coronary calcifications can be described as a third order polynomial fit curve. The exponential shape of this curve signifies a first quantification of the aggressive nature of coronary atherosclerosis and emphasizes the importance of early intervention. 

The changes in the natural progression rate of coronary artery calcification before the nutritional supplement program (-NS) and after one year on this program (+NS) are shown in Figure 2. The results are presented separately for the calcified area and the CAS score.


Figure 2. Changes in the average monthly growth rate of calcified areas (2.a,b) and
CAS scores (2.c,d) in all study participants (n=55) and in a subgroup of patients with
initial stages of coronary calcifications (CAS score<100, n=21), before nutritional
supplement intervention (-NS) and after one year of intervention (+NS). Data are
mean +/- SEM, asterisk indicates significance at p < 0.05 (one tailed t-test).

As presented in Figure 2.a. the average monthly growth of calcified areas for all 55 patients decreased from 1.24 mm 2 /month (SEM +/- 0.3) before the nutritional supplement program (-NS) to 1.05 mm 2 /month (+/- 0.2) after one year on this program (+NS). For patients with early coronary artery disease (Figure 2b), the average monthly growth of the calcified area decreased from 0.49 mm 2 /month (+/- 0.16) before taking the nutritional supplements (-NS) to 0.28 mm 2 /month (+/- 0.09) after one year on this program (+NS). 

As shown in Figure 2.c the average monthly changes in the total CAS score (calcified area X density of calcium deposits) for all 55 patients had decreased after one year on the nutritional supplement program by 11%, from 4.8 CAS score/month (SEM +/-0.97) before the program (-NS) to 4.27 CAS score /month(+/- 0.87) (+NS). In patients with early coronary artery disease (Figure 2.d) the average monthly growth of the total CAS score decreased during the same time by as much as 65%, from 1.85 CAS score /month (+/-0.49) before the nutritional supplement program (-NS) to 0.65 CAS score /month (+/- 0.36) on this program (+NS). The slow-down of the progression of coronary calcification during this nutritional supplement intervention for CAS scores of patients with early coronary artery disease was statistically significant (p<0.05) (Figure 2.d). For the other three sets of data the decrease of coronary calcifications with the nutritional supplement program was evident; however, largely due to the wide range of calcification values at study entry reflecting the different stages of coronary artery disease, it did not reach statistical significance.

It is noteworthy that the decrease in the CAS scores during intervention with nutritional supplements were more pronounced than for the calcified areas. This indicates a decrease in the density of calcium in addition to a reduction in the area of coronary calcium deposits during nutritional supplement intervention. 

Ultrafast CT scans at the beginning of the study and after 12 months on the nutritional supplement program, were complemented by a control scan after 6 month, allowing for additional insight into the time required for the nutritional supplements to exert their therapeutic effect. This additional evaluation was particularly important for early forms of coronary artery disease, because any therapeutic approach that can halt progression of early coronary calcification would ultimately prevent myocardial infarctions. 

Figure 3 shows the average coronary calcification areas (Figure 3.a) and total CAS scores (Figure 3.b) for patients with early coronary artery disease measured during different scanning dates before and during the course of the study. The actual coronary calcification values for areas and total CAS scores during nutritional supplement intervention are compared to the predicted values obtained from linear extrapolation of the growth rate without intervention. The letters A to D mark the different time points at which Ultrafast CT scans were performed. AB represents the changes in coronary calcification before intervention with nutritional supplement for the areas (Figure 3.a) and CAS scores (Figure 3.b). Accordingly, BC represents calcification changes during the first six months on the nutritional supplement program and CD changes during the second six months on the program. The calculated progression rate for coronary calcifications without therapeutic intervention by the nutritional supplement program is marked by a dotted line (B through F). 


Figure 3. Actual progression of coronary calcification areas and CAS scores before
and during one year of nutritional supplement intervention in a subgroup of patients
with initial stages of coronary calcification (CAS <100), compared to calculated progression
without intervention (dotted line). Each data point represents the mean value +/- SEM.

As seen in Figure 3.a without the nutritional supplement program, the average area of coronary calcifications in patients with early coronary artery disease increased from 17.62 mm 2 (+/- 1.0) at time point A to 23.05 mm 2 (+/- 1.8) at time point B. Thus, the annual extension of calcified areas without intervention was assessed with 31 %. At this progression rate, the average calcified area would reach 26.3 mm 2 after six months (point E) and 29.8 mm 2 after twelve months (point F). The nutritional supplement intervention, resulted in an average calcified area of 25.2 mm 2 (+/-2.2) after six months and of 27.0 mm 2 (+/-1.7) after 12 months, reflecting a 10% decrease compared to the predicted value.

Analogous observations were made for the total CAS before and during the nutritional supplement program. Figure 3.b shows that the CAS score before the nutritional supplement program increased by 44% per year, from 45.8 (+/- 3.2) (point A) to 65.9 mm 2 (+/- 5.2) (point B). At this progression rate the total CAS score, without the nutritional supplement program, would reach an average of 77.9 after six months (point E) and of 91 (point F) after twelve months. In contrast to this trend the actual CAS score values measured with the nutritional supplement program were 75.8 (+/-6.2) after 6 months (point C) and 78.1 (+/-5.1) after 12 months (point D). Thus, the progression of coronary calcification as determined by the total CAS scores decreased significantly during the second six months of nutritional supplement intervention (CD). The total score after twelve months on the nutritional supplement program was only 3% higher than after six months (CD), as compared to the projected increase of 17% (EF), indicating that during the second six months on the nutritional supplement program the process of coronary calcification has practically stopped.

Figure 4 shows the actual Ultrafast CT scans of a 51 year old patient with early, asymptomatic, coronary artery disease. The patients' first Ultrafast CT scan was performed in 1993 as part of an annual routine check-up. The scan film revealed small calcifications in the left anterior descendent coronary artery as well as in the right coronary artery. The second CT scan was performed one year later at which time the initial calcium deposits had further increased. Figure 4.a shows two Ultrafast CT scan images taken before the nutritional supplement program.


Figure 4. Ultrafast CT scan images of a 50 year old patient with asymptomatic
coronary artery disease before the nutritional supplement program (top row) and
approximately one year later (bottom row). Calcium deposits in the left descending coronary
artery and in the right coronary artery are visible as white areas.

Subsequently, the patient started on the nutritional supplement program. About one year later the patient received a control scan. At this time point, coronary calcifications were not found (Figure 4b), indicating the natural reversal of coronary artery disease.

Discussion

This is the first study that provides quantifiable data from in situ measurements about the natural progression rate of coronary artery disease. Although atherosclerotic plaques have a complex histomorphological composition, calcium dispersion within these plaques has been shown to be an excellent marker for their advancement. (11,13) Our study determined that the calcified vascular areas expand at a rate between 5 mm 2 (early atherosclerotic lesions) and 40 mm 2 (advanced atherosclerotic lesions). Before the nutritional supplement program the average annual increase of total coronary calcification was 44% (Figure 1). Considering the exponential increase of coronary calcification, it is evident that the control of cardiovascular disease has to focus on early diagnosis and early intervention.

Today, the diagnostic assessment of individual cardiovascular risk is largely confined to the measurement of plasma cholesterol and other risk factors with little correlation to the extent of atherosclerotic plaques. More accurate methods, such as coronary angiography, are confined to advanced, symptomatic, stages of coronary artery disease. Ultrafast CT provides the diagnostic option to quantify coronary artery disease non-invasively in its early stages. (14,15)

The most important finding of this study is that coronary artery disease can be effectively prevented and treated by natural means. This nutritional supplement program was able to decrease the progression of coronary artery disease within the relatively short time of one year, irrespective of the stage of this disease. Most significantly, in patients with early coronary calcifications this nutritional supplement program was able to essentially stop its further progression. In individual cases with small calcified deposits, nutritional supplement intervention led to their complete disappearance (Figure 4). 

We postulate that the nutritional supplement program tested in this study initiates the reconstitution of the vascular wall. Restructuring of the vascular matrix is facilitated by several nutrients tested, such as ascorbate (vitamin C), pyridoxine (vitamin B-6), L-lysine, and L-proline, as well as the trace element copper. Ascorbate is essential for the synthesis and hydroxylation of collagen and other matrix components, (16-18) and can be directly and indirectly involved in a variety of regulatory mechanisms in the vascular wall from cell differentiation to distribution of growth factors. (19,20) Pyridoxine and copper are essential for the proper cross-linking of matrix components.8 L-lysine and L-proline are important substrates for the biosynthesis of matrix proteins; they also competitively inhibit the binding of lipoprotein(a) to the vascular matrix, facilitating the release of lipoprotein(a) and other lipoproteins from the vascular wall. (5,12,21) Ascorbate and -tocopherol have been shown to inhibit the proliferation of vascular smooth muscle cells. (22-24) Moreover, tocopherols, beta-carotene, ascorbate, selenium and other antioxidants scavenge free radicals and protect plasma constituents, as well as vascular tissue, from oxidative damage. (25,26) In addition, nicotinate, riboflavin, pantothenate, carnitine, coenzyme Q-10, as well as many minerals and trace elements, function as cellular cofactors in form of NADH, NADPH, FADH, Coenzyme A and other cellular energy carriers. 8 The results of this study confirm that maintaining the integrity and physiological function of the vascular wall is the key therapeutic target in controlling cardiovascular disease. This also corroborates early angiographic findings that supplemental vitamin C may halt the progression of atherosclerosis in femoral arteries. (27)

These conclusions are even more relevant since deficiencies of essential nutrients are common. (28,29) Moreover, many epidemiological and clinical studies have already documented the benefits of individual nutrients in the prevention of cardiovascular disease. (30-35) Compared to the high dosages of vitamins used in some of these studies the amounts of nutrients used in this study are moderate, indicating the synergistic effect of this program. 

In this context, it seems appropriate to critically review some of the approaches currently used in the primary and secondary prevention of cardiovascular disease, including the extensive use of cholesterol-lowering drugs. An intervention study including lovastatin was performed with a highly selected group of hyperlipidemic patients, representing only an extremely narrow fraction of a normal population. (36) More recently, the reduction of myocardial infarctions and other cardiac events in patients taking simvastatin, led to recommendations for its long-term use even by normolipidemic patients. (37) However, because of their potential side-effects, the recommended use of these drugs has now been restricted to patients at high short term risk for coronary heart disease. (38)

Similarly, certain natural approaches to prevention of cardiovascular disease deserve a critical review. A program of rigorous diet and exercise program claims to be able to reverse coronary heart disease. (39) However, the published study does not provide compelling evidence documenting the regression of coronary atherosclerosis. Thus, the improved myocardial perfusion shown in that study, was likely the result of the physical training program, leading to an increased ventricular ejection fraction and an increased coronary perfusion pressure.

Considering the urgent need for effective and safe public health measures towards the control of cardiovascular disease, the validity of this study is of particular importance. In light of this, the following study elements are noteworthy:

  1. The patients in this study served as their own controls before and during nutritional supplement intervention, thereby minimizing undesired co-variables such as age, gender, genetic predisposition, diet or medication.

  2. Ultrafast CT has been extensively validated to assess the degree of coronary atherosclerosis, and it allowed quantification of coronary atherosclerotic plaques in situ. 13-15 This diagnostic technique also minimizes errors as they occur in angiography studies in which vasospasms, formation or lysis of thrombi, and other events cannot be differentiated from progression or regression of atherosclerotic plaques. Moreover, Ultrafast CT provides valuable information about the morphological changes during progression and regression of atherosclerotic plaques, by quantifying not only the area of coronary calcifications but also their density. Furthermore, the automatic CT measurements of coronary calcifications eliminates human error in the evaluation of the data.

In summary, the results of this study imply that coronary heart disease is a preventable and essentially reversible condition. This study documents that coronary artery disease could be halted in its early stages by following this nutritional supplement program. These results were achieved within one year, suggesting that additional therapeutic benefits in patients with advanced coronary artery disease can be obtained by an extended use of this program. The continuation of this study is currently under way to document these effects. This nutritional supplement program signifies an effective and safe approach for the prevention and adjunct therapy of cardiovascular disease. This study should encourage public health policy makers and health care providers to redefine health strategies towards the control of cardiovascular disease.

Acknowledgements

We are grateful to Jeffrey Kamradt for his help in coordinating this study. Douglas Boyd Ph.D., Lew Meyer Ph.D. from Imatron/HeartScan., South San Francisco, for helping to plan the study and providing the HeartScan facility; Lauranne Cox, Susan Brody, and Tom Caruso for their collaboration in conducting the heart scans. Dr. Roger Barth and Bernard Murphy for their assistance in planning the study, as well as to Martha Best for her secretarial assistance. 

Note by the Authors

This publication was originally submitted to the Journal of the American Medical Association (JAMA) on August 5, 1996 and referred to Charles B. Clayman, MD Contributing Editor of JAMA, by Editor in Chief, George D. Lundberg, MD. 

In his letter dated August 23, 1996, Dr. Clayman rejected publication of this paper without further comments. Apparently the contents of this paper challenged the interests of the pharmaceutical industry and their gatekeepers in the administration of the American Medical association. While thousands of doctors in America and millions of patients were waiting for this life-saving information it was deliberately blocked and sabotaged by special interest groups inside the American Medical Association.

The background: This study delivered indisputable proof that heart attacks – the number one killer in America – are vitamin deficiency conditions that can be prevented naturally by an optimum intake of essential nutrients. The publication of this study threatens a multi-billion dollar market in cholesterol-lowering drugs and other unnecessary pharmaceuticals currently marketed for heart conditions. 

Following the provocative rejection of this paper by the American Medical Association Journal's office, we immediately submitted our manuscript to the Journal of Applied Nutrition whose reviewers understood the importance of this study for the health and life of every human being on earth as well as for future generations. They immediately accepted this study for publication.

Following this decision, Dr. Rath received a letter from the JAMA office asking for a resubmission of the study for reconsideration of its publication. Apparently, the American Medical Association had realized its grave mistake. But it was too late. The credit for publishing this important study will go forever to the Journal of Applied Nutrition. 

As for the American Medical Association, thousands of doctors in America will have to hold their elected officers responsible for their unethical actions which were taken for no other reason than to serve special interests from the pharmaceutical industry. If the doctors in America do not clean up their house, the American people must see their organization as a puppet of the Pharma-Cartel. If the doctors of America don't act now, the American Medical Association will loose all remaining credibility that it serves the health interests of the American people.

References:

  1. World Health Statistics, World Health Organization, Geneva, 1994.

  2. Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Scientific American 1984;251:58-66.

  3. Steinberg D, Parthasarathy S, Carew TE, Witztum JL. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320:915-924.

  4. Ross R. The pathogenesis of atherosclerosis-an update. N Engl J Med. 1986;314:488-500.

  5. Rath M, Pauling L. A unified theory of human cardiovascular disease leading the way to the abolition of this diseases as a cause for human mortality. J Ortho Med. 1992;7:5-15.

  6. Rath M, Pauling L. Solution to the puzzle of human cardiovascular disease: Its primary cause is ascorbate deficiency, leading to the deposition of lipoprotein(a) and fibrinogen/fibrin in the vascular wall. J Ortho Med. 1991;6:125-134.

  7. Rath M. Reducing the risk for cardiovascular disease with nutritional supplements. J Ortho Med 1992;3:1-6.

  8. Stryer l. Biochemistry, 3rd ed. New York: W.H.Freeman and Company; 1988.

  9. Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Atherosclerosis (Suppl.) 1989;9:I-19-I-32.

  10. Constantinides P. The role of arterial wall injury in atherogenesis and arterial thrombogenesis. Zentralbl allg Pathol pathol Anat. 1989;135:517-530.

  11. R Stolman JM, Goldman HM, Gould BS. Ascorbic acid in blood vessels. Arch Pathol. 1961;72:59-68.

  12. US Patent #5,278,189.

  13. Agatston AS, Janowitz WR, Kaplan G, Gasso J, Hildner F, Viamonte M. Ultrafast computed tomography—detected coronary calcium reflects the angiographic extent of coronary arterial atherosclerosis. Am J Cardiology. 1994;74:1272-1274.

  14. Budoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease. Circulation. 1996; 93:898-904.

  15. Mautner SI, Mautner GC, Froehlich J, et al. Coronary artery disease: prediction with in vitro electron beam CT. Radiology. 1994;192:625-630.

  16. Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR. Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci. 1981;78:2879-2882.

  17. De Clerck YA, Jones PA. The effect of ascorbic acid on the nature and production of collagen and elastin by rat smooth muscle cells. Biochem J. 1980;186:217-225.

  18. Schwartz E, Bienkowski RS, Coltoff-Schiller B, Goldfisher S, Blumenfeld OO. Changes in the components of extracellular matrix and in growth properties of cultured aortic smooth muscle cells upon ascorbate feeding. J Cell Biol. 1982;92:462-470.

  19. Francheschi RT. The role of ascorbic acid in mesenchymal differentiation. Nutr Rev. 1992;50:65-70.

  20. Dozin B, Quatro R, Campanile g, Cancedda R. In vitro differentiation of mouse embryo chondrocytes: requirement for ascorbic acid. Eur J Cell Biol. 1992;58:390-394.

  21. Trieu VN, Zioncheck TF, Lawn RM, McConathy WJ. Interaction of apolipoprotein(a) with apolipoprotein B-containing lipoproteins. J Biol Chem. 1991; 226:5480-5485.

  22. Boscoboinik D, Szewczyk A, Hensey C, Azzi A. Inhibition of cell proliferation by -tocopherol. Role of protein kinase C. J Biol Chem. 1991; 266:6188-6194.

  23. Ivanov V, Niedzwiecki A. Direct and extracellular matrix mediated effects of ascorbate on vascular smooth muscle cells proliferation. 24th AAA (Age) and 9th Am Coll Clin Gerontol Meeting, Washington DC, 1994;Oct14-18.

  24. Nunes GL, Sgoutas DS, Redden RA, Sigman SR, Gravanis MB, King SB, Berk BC. Combination of vitamins C and E alters the response to coronary balloon injury in the pig. Arteriosclerosis, Thrombosis and Vascular Biology. 1995; 15:156-165.

  25. Retsky KL, Freeman MW, Frei B. Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti- rather than prooxidant activity of vitamin C in the presence of transition metal ions. J Biol Chem. 1993;268:1304-1309.

  26. Sies H, Stahl W. Vitamins E and C, -carotene and other carotenoids as antioxidants. Am J Clin Nutr. 1995;62(Suppl);1315S-1321S.

  27. Willis GC, Light AW, Gow WS. Serial arteriography in atherosclerosis. Can Med Ass J. 1954;71:562-568.

  28. Levine M, Contry-Caritilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended daily allowance. Proc Natl Acad Sci. 1996;93:3704-3709.

  29. Naurath HJ, Joosten E, Riezler R. Effects of vitamin B12, folate, and vitamin B6 supplements in elderly people with normal serum vitamin concentrations. The Lancet. 1995;346:85-89.

  30. Enstrom JE, Kanim LE, Klein MA. Vitamin C intake and mortality among a sample of the United States population. Epidemiology. 1992; 3: 194-202.

  31. Riemersma RA, Wood DA, Macintyre CCA, Elton RA, Gey KF, Oliver MF. Risk of angina pectoris and plasma concentrations of vitamin A, C, and E and carotene. The Lancet. 1991;337:1-5.

  32. Hodis HN, Mack WJ, LaBree L, et al. Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis. JAMA. 1995; 273:1849-1854.

  33. Morrison HI, Schaubel D, Desmeules M, Wigle DT. Serum folate and risk of fatal coronary heart disease. JAMA. 1996; 275:1893-1896.

  34. Stephens NG, Parsons A, Schofield PM, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). The Lancet. 1996;347:781-786.

  35. Heitzer T, Just H, Münzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Am Heart Assoc. 1996;comm:6-9.

  36. Brown BG, Albers JJ, Fisher LD, Schafer SM, Lin J-T, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323:1289-1298.

  37. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). The Lancet 1994;344:1383-1389.

  38. Newman TB, Hulley SB. Carcinogenicity of lipid-lowering drugs. JAMA. 1996;275:55-60.

  39. Gould KL, Ornish D, Scherwitz L, et al. Changes in myocardial perfusion abnormalities by positron emission tomography after long-term, intense risk factor modification. JAMA 1995;274:894-901.